We Are Family: Joint Pose Estimation of Multiple Persons

نویسندگان

  • Marcin Eichner
  • Vittorio Ferrari
چکیده

We present a novel multi-person pose estimation framework, which extends pictorial structures (PS) to explicitly model interactions between people and to estimate their poses jointly. Interactions are modeled as occlusions between people. First, we propose an occlusion probability predictor, based on the location of persons automatically detected in the image, and incorporate the predictions as occlusion priors into our multi-person PS model. Moreover, our model includes an inter-people exclusion penalty, preventing body parts from different people from occupying the same image region. Thanks to these elements, our model has a global view of the scene, resulting in better pose estimates in group photos, where several persons stand nearby and occlude each other. In a comprehensive evaluation on a new, challenging group photo datasets we demonstrate the benefits of our multi-person model over a state-of-the-art single-person pose estimator which treats each person independently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-person Pose Estimation with Local Joint-to-Person Associations

Despite of the recent success of neural networks for human pose estimation, current approaches are limited to pose estimation of a single person and cannot handle humans in groups or crowds. In this work, we propose a method that estimates the poses of multiple persons in an image in which a person can be occluded by another person or might be truncated. To this end, we consider multiperson pos...

متن کامل

Generative Partition Networks for Multi-Person Pose Estimation

This paper proposes a new Generative Partition Network (GPN) to address the challenging multi-person pose estimation problem. Different from existing models that are either completely top-down or bottom-up, the proposed GPN introduces a novel strategy—it generates partitions for multiple persons from their global joint candidates and infers instance-specific joint configurations simultaneously....

متن کامل

Simultaneous Multi-Person Detection and Single-Person Pose Estimation With a Single Heatmap Regression Network

We propose a two component fully-convolutional network for heatmap regression to perform multi-person pose estimation from images. The first component of the network predicts all body joints of all persons visible on an image, while the second component groups these body joints based on the position of the head of the person of interest. By applying the second component for all detected heads, ...

متن کامل

استفاده از برآورد حالت‌های پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با داده‌های کینکت

Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...

متن کامل

LCR-Net++: Multi-person 2D and 3D Pose Detection in Natural Images

We propose an end-to-end architecture for joint 2D and 3D human pose estimation in natural images. Key to our approach is the generation and scoring of a number of pose proposals per image, which allows us to predict 2D and 3D poses of multiple people simultaneously. Hence, our approach does not require an approximate localization of the humans for initialization. Our Localization-Classificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010